2021 Fourth International Conference on Computational Intelligence and Communication Technologies (CCICT)

Artificial Intelligence For Software Testing-
Perspectives And Practices

Nisha Jha
Research Scholar
Department of Computer Engineering
J.C. Bose University of Science and Technology, YMCA
Faridabad
nishajhal992@gmail.com

Abstract—Artificial Intelligence (AI) has emerged as a
buzzword for current software applications. The modern
advancements in the Information Technology sector have
invigorated the need to incorporate AI competencies into software
services. This objective has constrained the organizations to revisit
their software development processes. Software testing plays a
vital role in validating the software quality. Both the AI and
software testing researchers and Practitioners must lead the
innovations to address their integrating challenges. AI and
Machine Learning (ML) have the potential to advance the
capabilities to test the software intensely. The objective of the
paper is to review the state-of-the-art of applying Al in software
testing briefly. It also discusses the software testing activities
mapped to Al and the related challenges.

Keywords—Software Testing; Machine Learning; Artificial
Intelligence; Test Automation

I. INTRODUCTION

Current automated software testing techniques are
beneficial to enhance testing efficacy at a reasonable cost; a lot
of manual work is still needed. To accomplish high software
quality, both manual, as well as automated testing approaches
are required. To cope with the latest software advancements,
test objects must be consistently updated to stay pertinent [5].
Current test automation can't sum up across all applications and
can't impersonate human knowledge. A substantial gap exists
between the present state of practice and a fully automated
approach to software testing.

Software testing is primarily an activity in applying sample
inputs to a system and estimating the yields to decide the
accuracy of the application's conduct. This testing input and
output function is quite similar to the elementary functionalities
of training and executing modern Al and ML systems [4]. The
similarity suggests that the field of Software Testing is ready to
profit from ongoing advances in Al and ML.

According to Wikipedia [21], Al research can be defined as “the
study of intelligent devices that learn from its environment and
act accordingly in order to maximize the chance of successful
accomplishment of its goals.” AI makes a machine learn from
the data and think about the decisions precisely.

ML techniques, which have been in existence for a long time,
vested the software systems to furnish extra beneficial features
with the extensive accessibility of digitized information and

978-1-6654-2392-2/21/$31.00 ©2021 IEEE
DOI 10.1109/CICT53244.2021.00075

371

Rashmi Popli
Assistant Professor
Department of Computer Engineering
J.C. Bose University of Science and Technology, YMCA
Faridabad
rashmimukhija@gmail.com

computations [15]. Autonomous driving, natural language
processing, or image recognition are exquisite applications of
ML that can be realized in numerous sectors, including social
networking, finance, healthcare, manufacturing, etc.

Conventionally, software systems are developed using a
deductive approach, in which rules are written to govern the
system behaviors as program code [6]. Whereas in ML systems,
the rules are inferred from training data using an inductive
approach. The shift in the paradigm about ML-based software
applications' conduct has resulted in software systems that are
intrinsically difficult to be tested and verified.

Al-based software testing describes the power and applications
of Al algorithms and solutions for automatically streamlining
the process of software testing in fault detection and analysis,
test case generation, selection and execution, and quality
analysis [11]. It comprises diverse testing activities in Al-based
software testing.

There is a necessity for a holistic perspective of designing
software-intensive frameworks with ML competencies in a
realistic environment. Many researchers and industry
practitioners from software engineering (SE) and ML have
emphasized the necessity for such a holistic view.

A. Software Testing

Software testing has always been a critical phase of SE [16].
Automated software testing can help in accomplishing effective
testing with reasonable costs.

Test cases are one of the essential elements of the software
testing activity. A test case represents the conditions under
which the system under test is executed in order to find a bug.
When a test case uncovers a failure, the test is considered as
successful. A test case takes the variable input values for
execution. To assess the results of test cases, expected outcomes
and actual outcomes are evaluated and compared. The element
used to verify the accuracy of the outputs produced is termed as
test oracle [13].

In the past decades, substantial research has been performed to
automatize test case generation, test selection, test oracles, etc.
Rapid growth has been observed in practices emphasizing the
usage of automated software testing tools.

B. Machine Learning

There are mainly three classes of ML:

unsupervised, and reinforcement learning (Fig. 1.).
A labeled training dataset is used to build an ML model in
supervised learning, such as classification and regression
problems.

Unsupervised learning like clustering and association rule
learning, the model uses unlabeled data to discover new
patterns.

In reinforcement learning, an agent learns from the environment
and makes decisions. One of the compelling examples of
reinforcement learning is video games.

supervised,

Machine Learnmg

Snpervised Leaming Reinforcement Loammg

REGRESSION CLASSIFICATION

CLUSTERING DIMENTIONALITY

FEDUCTION
Principal
Component
Anatreis(PCA)
Faature Selection
Lingar
Anakesis(LDA)

Decision Trae
Linear Regresaion
Logistic
Rezrassion

4 Navie Bayas
* SVM
* E-Nearest Neighbor

* K-Means
* Mean Shift .
+ E-Medoids

Fig. 1. Machine Learning Techniques

Reinforcement Learning aims to reach a goal by learning
from experience even in the absence of training datasets. Q-
Learning and Temporal Difference are some of the examples of
commonly used algorithms [18].

A wide variety of Al techniques can be applied to manage
software testing activities. The most widely used techniques are
Artificial Neural Networks, Support Vector Machines, k-
Nearest Neighbor, Naive Bayes Classifier, and Decision Trees.

II. LITERATURE REVIEW

Machine Learning can be treated as one of the best test
approaches to provide exponential test coverage [4]. It includes
the following steps:

1. ML models can be trained accordingly to generate test input
and test validations for various applications.

2. ML provides the feature of executing the same test cases for
different applications.

3. ML test generation and execution can automatically improve
storage, network, and compute in the cloud.

378

Machine learning has for quite some time been utilized for
different purposes in software testing. Briand [3] gave a concise
outline of the cutting edge and reports on various novel
applications in the area of software testing on the basis of
personal experience.

ML testing is used to allude to any action pointed toward
distinguishing contrasts among existing and required practices
of Al frameworks. ML testing is not the same as testing
approaches that use ML or those guided by machine learning,
which should be referred to as ‘machine learning-based
testing’[14].

Some ML applications are expected to learn properties of data
sets where the accurate answers are not definitely known to
human clients. It is quite challenging to test such ML systems
due to the lack of reliable test oracles. Murphy et al. [2] portray
a software testing approach pointed toward tending to this issue
by testing implementations of two various ML ranking
algorithms: Support Vector Machines and MartiRank.

A design science approach had been employed [7] to examine
how machine insight can be utilized to improve the automation
of the analysis of non-functional testing. A model was created
to demonstrate the ability of machine intelligence methods to
provide helpful information about the relationships between
different test cases and their histories.

Many teams at Microsoft have invested massive energy into
fostering an extensive portfolio of Al applications and stages by
incorporating Al into existing software engineering measures
and developing ML ability. Amershi et al. [10] depicted the
consequences of an examination to get familiar with the cycle
and practice changes attempted by various Microsoft groups as
of late.

““Testing Al software deliberates the several testing tasks for
Al-based frameworks. Precise and feasible quality validation
models, approaches and procedures should be created and
applied for Al-based software to support the testing activities to
accomplish pre-defined test requirements and meet adequate
testing criteria in order to comply with quality assurance
standards.”” Therefore, testing Al features of the software
comprises diverse testing activities to discover software bugs
and validate the software's performance. Testing aims to realize
well-defined test prerequisites, meet pre-defined testing criteria
and guidelines of quality assurance of the Al software under-
test [11]. The primary focal points of Al software testing are
summed up as follows:

(a) Testing Al functional highlights to guarantee satisfactory
quality, accuracy, consistency and practicality using Al
techniques.

(b) Testing Al software’s quality on the basis of well-defined
quality guidelines and evaluation models like reliability,
scalability, security, performance and availability.

(c) Applying data-driven Al methods to ease automated
software testing and Al testing procedures.

III. ARTIFICIAL INTELLIGENCE AND SOFTWARE TESTING

This section comprises a journey of leveraging prevailing Al
research and its mapping to relevant software testing activities
and challenges.

Fig. 2. demonstrates an approach for ML-based test automation
according to one or more embodiment of the present invention
[20].

Collect automated test suites and execution outcomes using
an automated testing frame work.

Analyze the results of test case execution and recognise
failures using a report parser.

Storage of bug tickets of previous failures in a database.

s ~

Assess the matched database results and use ML engine to
predict type of the failure.

s \

Use a defect tracking tool to create pertinent bug tickets on
the basis of the type of bug.

Send automatic alert messages to report about the status a
bug ticket.

Provide manual feedback for adjusting ML technique and
database queries.

\ J

Fig. 2. Automated software testing using ML approach

A. Software Testing Activities Supported by Al

Different types of activities can be mapped to Al and ML
algorithms to smoothen the process.

Fig. 3. summarizes the various software testing activities
supported by Al

379

Test Case Generation

Test Caze Selection and Refinament

[/

Cross-Browser Testing

Fig. 3. Current Al Software Testing Coverage

B. Benefits

Existing methodologies are not able to provide complete
solutions for 100% automation in software testing, and a
significant amount of manual testing is still essential. There is
a considerable gap between the performance of testing done by
humans and machines. Human analyzers can check an
application's condition, act wisely, and investigate uncovered
bugs. In order to advance effectiveness and diminish the
expenses, there is a requirement to improve automated software
testing procedures and present more wise computerized testing
conduct that is equipped for mirroring human actions [5].

Zhang [1] elaborates some of the advantages of applying ML
for testing activities validation and verification, test oracle
generation, test adequacy matrix, defect and cost prediction.

Applying the progressions in Al and ML will help testing find
improvement propels, increment the effectiveness, speed and
adequacy of programming testing, and free analyzers from
numerous routine testing errands [8]. When used to extract the
test input, execution, and assessment issues, Al and ML
empower testing at scale, normalization of quality
measurements, benchmarking, and a worldwide arrangement of
reusable experiments.

During the implementation and testing phase, Al provides
automatic troubleshooting or debugging and error tracing
procedures. It can also support the inclusion of distinct software
procedures into extensive architectures [17].

Ferreira et al. [19] focus on gaining the momentum of ML for
software testing tasks. ML gives the best results with
unstructured and unlabeled data without Feature Engineering;
ML provides high-quality results with sequence prediction.

The Al predictive analytics can be used as a crucial technique
to realize all the possible test cases and create the software
applications better in terms of quality, robustness, reliability
and performance [12].

The main benefits have been summarized in Fig. 4.

Less
Execution
Time

Support
2 High Test

Coverage

Complex

Systems

Automated
Test Case

Generation

Self
Healing

Fig. 4. Benefits of Applying Al to Software Testing

C. Challenges

Developing ML systems in a realistic environment is quite
difficult due to the high complexities in engineering
conventional systems.

The significant challenges of applying Al and ML in ST
are:

Domain Knowledge Gap Problem [5][8]
Training Data Availability [6]

Oracle Problem [9]

Full Automation

Scalability of Testing

Test Management

100% Accuracy

Quality Assurance

Computational cost, Size and quality of the dataset
(19]

Test Case Design [6]

e Test Result Interpretation

Unfortunately, a rift has been observed between these two
respective communities. One of the reasons is Al community
focus on algorithms and the related performance characteristics
[6]. Whereas stakeholders in the SE community center around
the implementation and deployment of these algorithms or
techniques.

IV. APPLYING Al TO SOFTWARE TESTING

The section demonstrates the application of Al for software
testing through examples. The First Al research area has been
focused on, and then the research has been mapped to testing.

The example uses text generation to aid in software testing.
Text generation is one of the leading applications of natural
language processing. The aim is to automatically generate
natural language texts using used knowledge in computational
linguistics and Al

Being able to perceive objects, the next important step is to
make the machine learn the test flows from human testers. A
test can be defined as a series of actions to be performed on a
system under test and a set of anticipated outcomes.

Each step in the test flow execution process has been
categorized into three categories at a broader level, i.e.,
Perceive, Act, Observe. Perceive class focuses on creating pre-
defined situations for a test flow, concluding the environment,
and planning actions accordingly. The task of the Act category
belongs to the establishment and execution of appropriate
measures on the basis of the former created plan. Efforts
belonging to the Observe class enter around comparing
expected results to the system's actual behavior under test and
checking the precision. The steps are repeated continuously in
the testing procedure by letting the Observe class start a new
Perceive phase every time, forming a cycle. The presentation of
the test flow using this approach is the initial move to address
the machine language. The next step is to outline a language to
communicate substantial test flows. The language should be
adequately expressive to cover essential test cases in the test
flow generation phase. The language should also be able to
make utilization of webpage component abstractions of the
system.

Fig. 5. below shows a sample form and related test flows.

Enter Email Address

Enter Name

| Submit ‘ | Cancel |

Fig. 5. Sample Form

Test Flows:

Observe: Signup Form

Focus Textbox-Enter Email Address
Try valid entry

Observe: Success Message

Observe: Signup Form

Focus Textbox-Enter Email Address
Try invalid entry
Observe: Error Message

The components, actions, and observations are the primary
building blocks of the language. Components comprise the web
page elements. Observations are used to represent information
about the web page components. The actions are the measures
performed on the components. By interleaving observations
and actions, the language allows for the test flows specification.
The language's dynamic learning objects are utilized instead of
specific inputs that may be only relevant to a solitary system
under test in a particular domain application. Fig. 6. below
shows a shopping cart scenario to create test flows.

Shopping Cart

Deselect all items
Price

Foundations of Software Testing ISTQB Certification by Rex ?499.00
Black

Paperback Price

In stock
;
prime

This will be a gift Learn more

Quantity

==
== FOUNDATIONS OF

TESTING

[p—
Delete Product
Amazon Pantry items were removed from Shopping Cart.
Subtotal (1 item){499.00
Total Price

Fig. 6. Sample of Shopping Cart

Test Flows for the above scenario are:
Observe: Shopping Cart

Focus Added Item

Try Click Delete

Observe: Item not in the cart

Observe: Shopping Cart
Focus Added Item

Try Change in Quantity
Observe: Total Price Change

The goal is to share the experiences and later realize them as a
framework for future work.

V. CONCLUSION

The software will continue to be a part of human life as far as
the future can be envisioned. AI and ML will drastically
revolutionize the idea of software testing and software quality
in the upcoming years, far more radically than most expect.
Researchers and industry professionals from the two domains
have to realize the opposite side’s concerns and have an all-
encompassing perspective on designing ML frameworks.
Software Testing and ML communities should cooperate to
resolve the critical challenges to ensure the quality of Al-based
software systems in general and benefit from each other.

381

This paper can aid as a base to acquire a holistic view and a
treasury of papers, analysts, and associations to investigate this
subject.

References

D. Zhang and J. J. P. Tsai, “Machine learning and software engineering,”
in Proceedings of the International Conference on Tools with Artificial
Intelligence, 2003, no. May, pp. 22-29, doi: 10.1109/tai.2002.1180784.

C. Murphy, G. Kaiser, and M. Arias, “An approach to software testing of
machine learning applications,” in /9th International Conference on
Software Engineering and Knowledge Engineering, SEKE 2007, 2007,
pp. 167-172.

L. C. Briand, “Novel applications of machine learning in software
testing,” in Proceedings - International Conference on Quality Sofiware,
2008, pp. 3-10, doi: 10.1109/QSIC.2008.29.

J. Arbon, “Al for Software Testing,” PNSQC Proc., pp. 1-19, 2017.

D. Santiago, T. M. King, and P. J. Clarke, “Al-Driven Test Generation:
Machines Learning from Human Testers,” in In Pacific Northwest
Software Quality Conference (ed.). Proceedings of the 36th Pacific NW
Software Quality Conference. Portland: Pacific Northwest Sofiware
Quality Conference. https://www.pnsqc.org/wp-
content/uploads/2018/09/38-Santiago-AI-Driven-Test-Ge, 2018, pp. 1-
14, [Online]. Auvailable: https://www.pnsqc.org/wp-
content/uploads/2018/09/38-Santiago-Al-Driven-Test-Generation.pdf.

F. Khomh, B. Adams, J. Cheng, M. Fokaefs, and G. Antoniol, “Software
Engineering for Machine-Learning Applications: The Road Ahead,”
IEEE Softw., vol. 35, mno. 5, pp. 81-84, 2018, doi:
10.1109/MS.2018.3571224.

E. Wallengren and R. S. Sigurdson, “Machine Intelligence in Automated
Performance Test Analysis,” 2018.

A. Bennaceur and K. Meinke, “Machine Learning for Software
Engineering -Models, Methods, and Applications,” in 2018 ACM/IEEE
40th International Conference on Sofiware Engineering: Companion
Proceedings, 2018, vol. 11026 LNCS, no. 1, pp. 3-49, doi: 10.1007/978-
3-319-96562-8_1.

S. Sherin, M. U. Khan, and M. Z. Igbal, “A systematic mapping study on
testing of machine learning programs,” arXiv, 2019.

(1]

(2]

(4]
(3]

(7]
(8]

(9]

[10] st. al Saleema Amershi, Andrew Begel, “Software Engineering for
Machine Learning: A Case Study,” in Proceedings of the 4lst
International ~ Conference on Software Engineering: Sofiware
Engineering in Practice (ICSE-SEIP ’19). IEEE Press, 2019, no. May
2019, pp. 291-300, [Online]. Available: https:/fontysblogt.nl/software-
engineering-for-machine-learning-applications/.

C. Tao, J. Gao, and T. Wang, “Testing and Quality Validation for Al
Software-Perspectives, Issues, and Practices,” IEEE Access, vol. 7, pp.
120164-120175, 2019, doi: 10.1109/ACCESS.2019.2937107.

H. Hourani and A. Hammad, “The Impact of Artificial Intelligence on
Software Testing,” in 2019 IEEE Jordan International Joint Conference
on Electrical Engineering and Information Technology, JEEIT 2019 -
Proceedings, 2019, pp. 565-570.

V. H. S. Durelli et al., “Machine learning applied to software testing: A
systematic mapping study,” IEEE Trans. Reliab., vol. 68, no. 3, pp. 1189—
1212, 2019, doi: 10.1109/TR.2019.2892517.

J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” arXiv, pp. 1-37, 2019, doi:
10.1109/tse.2019.2962027.

G. Giray, “A software engineering perspective on engineering machine
learning systems: State of the art and challenges,” arXiv, no. 1, 2020.

J. J. Li, A. Ulrich, X. Bai, and A. Bertolino, “Advances in test automation
for software with special focus on artificial intelligence and machine
learning,” Softw. Qual. J., vol. 28, no. 1, pp. 245-248, 2020, doi:
10.1007/s11219-019-09472-3.

M. Barenkamp, J. Rebstadt, and O. Thomas, “Applications of Al in
classical software engineering,” Al Perspect., vol. 2, no. 1, pp. 1-15,
2020, doi: 10.1186/s42467-020-00005-4.

R. Lima, A. M. R. Da Cruz, and J. Ribeiro, “Artificial Intelligence
Applied to Software Testing: A Literature Review,” Iber. Conf. Inf. Syst.

(1]

[12]

[14]

[15]

(16

[17]

(18]

Technol. Cist., vol. 2020-June, no. June, 2020, doi: [20] S. Mahapatra and S. Mishra, “Usage of Machine Learning in Software

10.23919/CISTI49556.2020.9141124. Testing,” no. August, pp. 39-54, 2020, doi: 10.1007/978-3-030-38006-
[19] F. Ferreira, L. L. Silva, and M. T. Valente, “Software Engineering Meets 9_3.

Deep Learning: A Mapping Study,” arXiv, 2020, [Online]. Available: [21] https://en.wikipedia.org/wiki/Artificial intelligence

http://arxiv.org/abs/1909.11436.

382

